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SUMMARY

The method Of computtig velocity and
profiles under.the essuqtion of the

relaticm, outlined in NACA Tech&ical Note

pressure tistrilnztionsalong
simplified density+peed
1006, is extended to the case

of a nonsymmetrical profile end a flow with ci;cuiaticm. The shape of
the profile, the speed of the undisturbed flow, end a parameter deter-
mining the angle of attack may be prescribed. The problem is reduced
to a nonlinear integral equation which can be solved riumericallyby en
iteration method. A numerical example is given.

INTRODUCTION

This paper treats the flow of a compressible fluid past a wing
section under the assumption of Chaplygints simplified density-speed
relation (references 1, 2, end 3). The method is sufficiently well
known to preclude the necessity of a detailed discussion. It till
suffice to recall that it consists of replactig the ‘~exact”dansity-
speed relation in a potential flow

“’”4-=$?
(where p is the density, q the speed, a the
y the ratio of specific heats, and the subscript
stagnation values) by the “approximate” relation

(1)

speed of sound,
zero refers to the

. . . ...—.—— ---- .__. .. .. .. .— .-. ____ .._. ... ..- ..-——— . ..-— —_ ___ ___________.
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P L=pol+a2

0

(2)

which can be obtained from equation (1) by setting y = -1. Under the
assumption of relation (2), the continuity equation for the potential
of a steady two-dimensional flow

a ()y+
s ‘ax

%ecomes the classical equation of a minimal surface.

For flows past airfoils olmdw the simplified density–speed
relation, the “inverse problem” (construction of a flow past a profile
without predetermhing the shape of the profile) was solvedby Tsien
(reference.4) for flows without circulation. A formula generating
circulatory flows was given by the author (reference 5) ami, in a more
elegant snd general form, _byG&herb (reference 6). The latter result
was also o%ts$ned independently by Lin (reference 7). ~ a recent
report (reference 8) the “direct problem” (construction of a flow past
a given profile) ‘wassolved for the case of a circulation-free flow and
a symmetrical profile. The solution for the general case is given in
this report. It till le seen that the corresponding boundary-value
prohlen is equivalent to a mapping yroblem, similar to the conformal
mapping problem occurring in the theory of incompressible fluid. This
mapping problem may be reduced.to an integral equation somewhat similar
to the well–known equation of Theodorsen and Garrick but not identical
with it even in the case of infinitely slow (snd therefore incompress-
ible) flows. The integral equation can be solvednumerically by an
iteration method which seems to converge, though a rigorous convergence
proof is still lacki@.

The procedure for computing velocity distribution is described in
the main part of the paper; the mathematical derivation and justifi– ‘
cation will be found in the appendix.

The method described in this report couldbe extended to the case
of gases obeying the actual equation of state (or, for that matter,
any prescribed pressur=ensity relation) as was done for the case of
symmetrical flows (reference 9). The computational labor involved in
treating this case wouldbe so extensive that a detailed description
does not seem to be called for at present.

— —— .—
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The author wants to draw attention to a ~aper by A. Gelbart and
D. Resch (reference 10) in which a clifferent method of oMmining
velocity distributions along preassigned profiles is used. WMle
GelbartTs method does not aim at obtaining exact values, it does
achieve good approximations and involves very little computational
lalor.

This tivestigation was conducted at Syracuse University under the
sp&sorship end with the f3nancial assi~tsnce of the National Adtisory
Committee for Aeronautics.

The author is greatly indebted to Miss Elizabeth H. Wetherell for
competent assistance.
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SYMBOLS

auxiliary function definedby equation (A23)

local speed of sound

speed of sO~a at stagnation point

auxiliary fuuction defhedby equatian (A23) .

~ositive constant

line element in z-plane; line element of profile P ‘

Mne element on minimal surface @(x,y) whose
projection is ds

domain exterior to profile ‘P

functiou equal to f*(u–qJ

nth approximation to function f(m)

function defining mapping”of circle into profile P

function defined in section 3 under ANALYSIS

coefficients of metric dS2

complex potential of a compressible f~ow

function definedby equation (10)

------...... .. —-...-——-- — --.. —-. .— -.——..-. ---- .—.-.-. ..-—— —.—.--——. — _______ _ _ —_
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line through ~ directed toward

NACATN 2056

E(P) and bisecting
augle at zT

“ function defined by

stream Mach number

profile in z=plane

s~eed

equation (A35)

speed of undisturbed flow

value of q at a IJoundarypoint

distorted speed

value of q* at

maximumof 3* ‘

a boundary point

distorted

radius of

real part

speed of flow at inftuity “

circle in ~–plane

of following term

arc length measured alwg P

total length of curve P

compcments of velocity

complex velocity

distorted complex velocity

Cartesian coor~tes in z-lane

complex variable

complex variable on leading edge

complex veriable on trailing edge

~oordinate of profile as a function of parameter a

. —-—- .. . ..——— ——-—
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,

.

angle of attack

angle at trailing edge ‘,

exponent in adiabatic relation

circulation of flow

auxiliary complex variable

slope of velocity vector

value of e on boundary

function determining shape

.

of curve P

squere of distorted speed of undisturbed flow

function $efined ’byequations (9)

Cartesian coordinates in ~–plane

density

stagnation density

dimensionless length parameter along profile P

parameter value corresponding to point ZL on P

prescribed value of f(ul)

velocity potential

value of @ at boundary

auxiliary analytic function defined by equation (A22)

stream function

argument of a point on circle 1{1 =R

parameter determining angle of attack and circulation

nth approximation to parameter O.

value of u for which f(u) = al

.—_________ .— .—. —..._-_-_ . .... . . ._______ ___ . ..—.—
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1. The Boundary-Value Prollem and the Mapping Problem

Given a profile P (see fig. 1) in the plane of the com@ex vari-
able z = x + iy. The profile P is assumed to ‘bea smooth curve
except perhaps fOr a sharp corner at the traila ed@ zT. LO% Z be

a directed straight ltiO passing through the point ZT, potiti~ toward

the domain exterior to P and bisectm the angle at ZT. (If P haS

a cusp at zT, 2 shall be tangemt to P at this point.) The posi-

tion of P can be specified by prescribtig the angle a by which Z
must be turned in order to make it coincide with the positive x~is~
This angle will be called the angle of attack end it will be assumed

that Ial <,:.

Let s denote the arc l~gth on P ~aswed @ the counte?+
clockwise i13rectionfrom the point zT. It will be convenient to use

the dimensionlessparameter

where S is the total length

u= 2Yrs/s

of the curve P. The shape.of P is

determined-by the function (3(u),0< u < 2x, which denotes the
between Z snd the tangent to P at a petit corresponding to
pere.mter value u, the tangent pointing in the direction of
increasing u (cf. fig. 1) ● Note that

Cl(o) =1I-:1
e(2Yr)= 2Y’C+:

J

13 being the angle at the trailing edge.

angle
the

(3)

It is required to ftid a steady compressible potential flow around
the profile P which is parallel to the x-axis far away from the
profile and has there a prescribed speed ~. The flow should obey the
simplified density~peed relation (2) and satisfy the Kutta=oukowski
condition (i.e., the trailtig edge should be a stagnation point, or at
least, if P has a cusP at zT, a pOiIItwhere the Streamline divides

itself into two branches). It is assumed that the values of a

.

.— ..——.— -——–
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and qm are such
pOilltzL Of P

that there exists one tire stagnation
corresponding to the paremeter value

It will he shown in the appendix that this problem

7

point, at some
CL.

is equivalent
to the determination of a mapping of the domain ‘E(P) exterior to the
profile P onto the domain I~ I > R in the plane of the auxiliary
complex variable ~, in such a way that the potential.and stream func-
tion of the flow become conjugate harmonic f-wctions in.the ~-plane.
The ~pp~ shotid take Z = w into ~ = w md sho~dprese~ethe
length and direction of a horizontal line elemsnt at infinity.

By this mapping the profile P goes over into the circle It I= R,

the points z = ZT ~d z = ~ beingte,ken~to ~ . Re-i% ,

end{= =e~, respectively (see fig. 2). The p&.nt-tepoint corre–
spondence between P and the circle is described by an increasing
function

such that Z = Z(a) corresponds to, ~ = Reim. JR ptXc%iClib32?

f*(-@ = o 1
f*(lt+ (DO)= UL

‘*@”-“d=2“
It will be more convenient to use the function

f(u) = f*(ul- ~)

satisfying the relations

f(o) = o

“f~+2@=cL

f(21T)= 211
J

(4)

(5)

(6)

It will be seen that the functions f(u) can be computed by
solving a nonlineer integral equation. ,

—— -——- -. -.......—— -— —...— — ... . . . . .. ______
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It
mapping

2. Computatio~-of the Velocity

Angle of Attack, and the

turns out that the function f(u)
from the ~-Pl~e into the z–Plane~

NACA TN 2056

Distribution, the

Circulation .

determines completely the
as well as the velocity

distribution of the flow. The boundary values of quantities character-

izing the flow will be denoted by tildes and considered as functions of
the parameter 6. Thus ~(a) denotes the value of the potential at the
point correspon~g to the parameter value u.

The speed of the flow at infinity will be characterizedby means of
the parameter

Set

and

A(u)) =@[f(uJ)] –~u; o~uszfi

A (m) =A(m+2fi)

/

It

h(m) =& p(u) + t)

o

The speed of the flow at the profile

– A(m – t)] Cot;dt
\

is given by the formula

2~*[f(.)]

where

.

(8)

(9)

(lo)

(11)

(12)

.

--

.

,.

..———-— ..———.-. .—
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The angle of attack a is determined by

~

2X
3na=a ._+_o 2 & @[f(fN)]am

o

Finally, the circulation of the flow equals

9

‘ (13)

.,
$ “ “’2+?

r=+o”
2 nfissin~

l-~ ;+2P “.2P “

. / 1[

(14)
2X

I 1h(u.).)_k2~ 5.0s2 ‘–200 eh(u)) ~uJfle-Sin —
2 sin —

I
o 2

.It will le seeq that the f~ction f(u) can be comptited. Thus
it is possible to determine a flow for a given function G(a), that is,
for a profile of given shape and for a given value of the paremeter l.,
that is, for a given speed of the undisturbed flow. The parameter On

determines the angle of attack and the circulation. In particular, tie
value uo = O leads to a circulation-free flow.

3. The Integral

The fundtion f(u) satisfies the

Equation

relation

where h(m) is @venhy equations (9) and (10). Since the righwhand
side depends on f, equatim (15) is a nonlineer integral equation.

For

7

= O the integral equation reduces to the one derived
previously reference 8) under the special assumption that the profile

(15)

. ...— ______ _____ __________ __ ___ — -.—.—- ..—__ _ .. ._._ _____-_ _. ..._ ._ %_..._ .__.
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*

is symmetrical with respect to the x-exis. The special case X =

corresponds to an infinitely slow flow. For x = O the integral

equation becomes

jl
(D 1-:h(u,l~t

sin — e- ~t

0 2

f(u))= 211
2X 1-: h(u,)

/11

U? —
sin — @t

2e
o-

0

It is seen that f(m) does not depend on ~. This had to be

e~ected; for in this case the function f(m) describes the corres-
pondence %etween P and I~ I = R resulting Rrom a conformal mapping

of E(P) onto l!.! > R= In fact,-an infinitely slow compressible flow
is eqti%lent to’a~ incompressible flow.

The right-bend side of “equation (15) will
bY F~C% f(mt), A, ~]. The integral equatim

symbolic form

f =F(f, k, ~)

be denoted
may be written in the

(16)

~ this equationx and ~ a-e fixed parameters= ~tead of deter–

mining the speed of the flow by the value of .1. (i.e., hy the value

Of qm) it maY %e desirable “toprescr.i~ethe ~~ue of the ‘i- 10cal
speed q-. It is known (and follows from the formulas given by the

appendix) that the speed attains its maximum at the boundary. According
to equation (11), prescribing the maximum local speed is tentamomt to
prescribing the maxim-m of the functim 5* definedhy equation (12).
Let this maximumbe denotedby 3*-. It follows from equation (12)

or

(18)
.,

—.. . _——
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where gl denotes the squsre of the righ%hand side of equation (17).

If ?/+- is the prescribed value and’ X the unknown quantity, then

equation (17) must be replaced by the system

.
f=F(f, k, @ “ I

I
(19)

Similarly, if instead of prescribing the value of ~ it is

desired to prescrile the angle of attack a, equation (16) is to be
replaced by the system

f =F(f, k, @

“}

(20)

%= Q(f> A,a)

.
where 132(f,A, ‘~) is ohtainedly solving equation (13),

.

0

The angle of attack (snd hence also Uo) will be determined if the

Value of f(m) is prescribed atm~ome fixed point Ul, o <al < 2fi. In
– 2%

fact, expanding the terh COS2 z in equation (15) by mesns”of

the addition theorem, it is seen that the condition

f(u-J)‘ q (2i)

is equivalent to a trigonometric equa~ion for the angle Oo. The ~

coefficients of this equation will depend upon the function f and
upon X (as well as upon 01).

.
Denote the solutiorlof this trigono-

metric equation by

. f-q)= gs(f? AJ>q.) - (22)
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If the engle of attack is determined
equations to be solved take the form

NACA TN 2056

by means of condition (21) the

f =I?(f, h, 00)

/
(23)

Although this way of fixing the
it turns out to he advantageous

.
4. Solution of

.
.

engle of attack seems rather artificial,
for numerical computations.

the Integral Equation

AU fom fo- of the inte~al equati~ given ~ the Preceding
section suggest the,application of the method of successive approxi—
mation. To solve equation (16) for tist~ce~ ~ ~ti~ function fo(~)
is selected, such that

fo: > ()

1rfo(o) =’0 .

fo(211)=2X

The operator I?(f,x, U(-J)transforms this function

tion fl(m’) which also satisfies conditions (24).

ively the functions

If the

limit

fl = F (fo)

f2 = F (f~

..*

f
n+l ()

=Ffn

..-

(24) .

.

into another func–

Now compute success-

sequence (fn) converges and F(fn)+F(lirnfn), then the

f = limfn is a solution of equation (16).

.-. —.- ——— .-
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It is easy to see how this procedure has to be modified for the
systems (19), (20), and (23)0 In the case of system (23), for instance,
sn initia.1’functionfo(m) satisfying conditions (24) is chosen, and

the function fl(u.))end the values ‘%(1) are coq?uted so that.

(2’5)

J
I

This.is clearly possible, since the function f. dete-es ~ fwc_

tion h(u) according to equations (9) and (10). With this
function h(u)) and the given values Of X.,al, ~d ~, the value ~(1)

is determined so that the condition

(1) is found, the computationbe satisfied. Once the value,of ~

of fl(m) can be completed. ‘Thefunction fl(m) satisfies condi-
tions (24), so that the procedure may be continued. The function fn(u) ‘

and the numbers UO(n) are computed ly the scheme:

(fn =F fn_l, ~, m.
(n)

) ..
.

The procedure yields the solution of system (23) provided that it con- ,
verges, that is, provided that the limits

f(m) =nl.mmfn(m)

%= lim mO
(n)

n+ aI

exist.

The systems (19) and (20) may be treated in a similer way.

------ —--—.-—_—___ —.—_ ,.——— .- —_. _. . .
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Attempts to settle the convergence question theoretically have
failed thus far. On the basis of numerical.computations which were
carried out, the author believes the iteration method will b general
diverge when applied to the equation (16) and will converge for the case

of system (23), provided the velue of al is chosen in such a way that

the point of P corresponding to the value of al is”close to the

point of maximum curvature of the profile. The convergence might be
due to the fact that all successive approximations satisfy condi–
tion (21). This opinion is substantiatedby the fact that previous
computations (see reference 8) indicate that the iteration method.can
be applied successfully to equation (16) provided the profile is symmet-
rical end the flow is circulation-free. In fact, for a s~etrical
profile the condition ~ = O is equivalent to a condition of the form

of equation (21) with $1 = al = X.

The commutation of the successive approximations is a routine
matter involving
equation (10) is
at t = O being

only numerical integration. Note that the integral in
a proper Riemann integral, the value of the integral
defined as

{
lim @(m
t+o

= 4A’ (CD)

+ t) –A(U — t)]cot;
}

{

Ir+p
= 4 @’[f(LD)]f’(m) – ~

}
(26)

\

The rapidity of the converg~ce will depend upon the choice of the
approximation of order o, fo(m). In general there shouldbe no diffi-
culty in finding a good initial approximation. The remarks concerning
this made,in reference 8, section 6, apply to the present case with
obvious modification.

AS en example, the velocity distribution of a circulatory flow past
a symmetrical Joukowski profile has been computed. The stream Mach
nuniberwas chosen to be & = 0.685. Since the streem Mach nuniberis
connected with the parameter X by the relation

“’=& “ (27)

,.

..__ .—-.—..—— ——-—— —— —.— .-
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the value of -X is 0.157. me t~c~es~ of
by setting the ususl thickness parameter e

the profile is
equal to 0.15.

significance of e is
detemined by choosing

aetermineil
(The

seen from fig. 3.) The angle”of attack was
the values -

.’‘1 = 3.=22 -

The computation @elded the values

a= 2° 27f

15 “

The functions G(cr) ma @t(U) for a JoukowS~ yrofile were
computed by Saltzer (reference11). The numerical values of these
functions for a symmetricalprofile tith e = 0.15 .~e g~~~ ~
reference 8. ‘I’hesolution of the integral equation
for X = 0.157, 00 = 0° was chosen ati fo(u). Them2mes of the

successive ayprokimations fn(m), ~(n) are given in table 1. The
functions f=(u) were computed for u = 0°, 10°, . . . , 360°. The
difference between f8 “and f9 maybe considerea as megligille within
the limits of accuracy of the conqmtations. The restiting ~elocity
distribution is given in table 2 ana plotted in figure 3. The potits
on the profile are characterized%y means of the sm@ituaes b of the
points of the circle into w~ch they .eretaken%y the standard codorme,l
mapping.

The resulting velocity distribution maybe compereawith that of
an incompressible flow (l&= O) Yor the same angle of attack, and
with that o%tained ly means of the I&wE% –Tsien velocity-correction
formula

where
flow,

the su%scriyts
respectively.

c and i ,denote.coQressille .~a incop.ressi%le

.

— ..—. —-..-— .. .. . .. . . . _______ ——.—______ ______——.——.... -_ ._. .. ...__ .-—.. —— __ _______ _
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Remark.- During the

authorls attention that,
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present investigation, it has come to the

in a previous,work on this subject (refer-

Y

ence 8), there are two errors., In the fornmla (61) on page 24 (cf.

equation (28) of the present reyort) the exponent 2 is missing in’the
denominator. In ta%le IIIb”the values in the s“econdcolumn have been
computed incorrectly. The corrected values are given in table 3 of the
present repo%t.

\ CONCLUDING~

The integral equation used for the numerical computation of
velocity distributions caa also be used as a basis of existence
theorems for flows oleying the simplified density+peed relation.
This, however, is a problem of pure mathematical interest. As stated
in the INTRODUCTION, the extension of the present method to subsonic
flows obeying the adiabatic pressure-densityrelation hinges essen–
tially on prollems of computational technique.

Syracuse University
Syracuse, N. Y., Septetier I-,1947

e

.—. ..—



NACA TN 2056

APPENDIX

.

17

WHEMATICAL DERIVATION AND JUSTIFICATION OF PROCEDURE

1. The Boundmy-Value Problem
.

This appendix contains the derivation of the results announced in
sections l-to 3 under ANALYSIS. According-to the definition of the
quantities a, s, a, @ the equation of the profile P maybe writt~
in the form /

—ia

/

(Y
z sz(u)=zT+ E&- ei~(t) tit, 0< a< 2X (Al)

o

The velocity potential @ is defined by the relations

where u and v are the components of the

(A2)

velocity vector. As stated
in the INTRODUCTION,, @ sati=fies the minimal surface equation .

I- -1

It is required to finta solution
domain E(P) exterior to P- and

[01 [ ()]~+ag2a2gi Zagag a’2g + ~+,agzazg—.-— _._.~ ax2 ax ay ax ay
~ _’.#=o (A3)

of equation (A3) defined in the
satisfying the conditions

,,

(Ak) .

—-.. ....---- _______..... . ___ .. ... ..._ .. -&_ . . . ..—– _ _ . . ...+_____ ._. _
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(n denoting the direction normal to P) as well as the Kutta-Joukowski
condition

+ <m at ‘T ‘

In general ~ will’not be on~valued.’r The circulation of the Ylow is
given by

r=
/ .!

(udx+vdy)=ao d@ ‘ (A5)

the inte~ation being performed along any simple closed curve
containing P in its interior. It.is assumed that tlnere
one stagnation point different from iTS zL = Z(UL).

exists exactly

Set

—ie
w=u—iv=qe

The function G (slope of the velocity vector) satisfies

6+0 as z~w

{

@ —a— n an the upper bsnk of
0 =

Q —a— 2X on the lower bank of

(A6)

the conditions

(A7)

P
“(A8)

P

correspondingHere the upper or lower bank of P denotes the arc of P
to the parameter values O<U<UL or ~< a< ?fi,respectively.

The stream function ~ of the flow is defined by the relations

;

W ‘“&=z

pv . _b+
poao

where p is given byequatim (2). Since t is constant along any
streamline, it may be mswd that $ = O on P.

(A9)

.
‘1

—— .. ..——— , ——.—- . . ..————.
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The “distorted complex velocity” is given by

*=
—ie

q*e

.

where q* is the “distorted speed”

Note that the parameter

where ~*_. is the value

x definedby e“quation(8) satisfies

19

of q* for the undisturbed flow, and that

(Ale)

(All)

(A12)

equation ~All) is-equivalent to equation (11).

It has been shown (see, for instance, reference 5) that the com~lex
potential

G=@+i~

is en analytic”function of the complex variable ~.

2. Mapping of the Profile onto a Circle

In this section the existence and uniqueness of the
domain E(P) described in section 1 under ANALYSIS will
This transformation ‘

q = 9(XSY)1
must satisfy the following conditions:

mapping of the
be established.

(Alk)

(1) The transformation (Alh) maps E(P) in a one-to-one way onto
the domain 1~~>R, where R is an appropriately chosen positive
constant and ~=~+i~. The profile P is taken into the

.
circle C = Relm, O< m ~ 2m.

. ..__. .—_—. .. —.— —— . . . .. -— --—--—e ——. ..— - —-—------ -—— -—--—. .— —-— ——- --—-—— -—-——
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(2) The
and, as z+

MCA TN 2056

transformation (A14) takes the point z = rn into ~ = m

m>

zl+o
ax 1.a~ ;C>o

(A15)

dy dy J“ .
(3) In the ~-plane the complex variables G and w+ are analytic

functions of ~.

Let d.s be a line element @ the z–plane, ds = (&,@). Let ~
denote the length of a line eleme@ on the minimal surface $ = $(X,Y)
whose projection is ds.

Then
,

dS2=ifl+dx2+dy2

=~(uti+vay)z+asz
aoz

03?

as2 = g~~ (IX2 + 2g12 dx dy + g22 d.Y2

where
.

gll = 1 + (dao)2 -2e

(/) 2 cos e singlz= ~ao .

()
%2 = 1 + qjao 2 COS2Q

By virtue of classical theorems it is possible to
in a one-to-one way onto the domain exterior to a
the mapping being conforroalwith respect
It has been show (reference 5) that any
tion (3). By a linear transformation of
that the mapping satisfy condition (2).
uniquely determined.

e

.

map the donmin E(P)
circle in the ~—pl~e~

to the Ri.emannianmetric &S.
such mapping satisfies condi-
the {–pl~e it Cm be ac~eved
The constant R is then

.

— -.—— –—— -— ———— .
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According to the definition of the function f*(u), equation (4)
takes the point z = Z[f*(U.))]into ~ =Rei~.

.

3. The Complex Potential in the ~-plane

In the ~-plane G = ~+ iv is ~ ~~fiic function for f~l > R.
The harmonic function v is one-valued, end ~ . 0 for ICI =R. The
harmonic function # increases by, r/s. as ~ goes once around the
circle I!I = R (in the counterclockwise direction). Furthermore, by
conditions (A4) end (Al~),

.

c)
(M6)

It follows that G has the form (except perhaps for a nonessential
additive constant)

so that .

:=:(’-Re~)(++)

where

–a r
‘o =—sin —

41mqm -

The boundary value of the velocity potential is given by

so that . .

d?[f*(@] . AR ~ sin m - ‘()m+%

h
— Cos —

a. 2 .2
.

(All’) ‘

(m8)

(lug)

. . -.-—__. ..__ ____ ______ -------
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Note that the line ~ = O in the ~–plane meets the

circle {~1 =R at ~ =Re-iaO endat ~ =-Rei@O, wh,reas the
line V = O in the z-plane meets the profile P at zT and zL. It
follows that

f*(-fJ.)())= o

“1

(A20)

f*(fi+~) = CL

as was asserted in section 1 under ANALYSIS.

0
4. The Velocity in the ~–Plene

The distorted velocity w* is analytic in the ~–plsne. .
Since q# O in E(P), w+(~) #O for ILI> R, so that

log w++= log q* – ie

is a regular analytic function in l~[>R. By virtue of equations (A8)
and (~8) the boundary values of the harmonic function e exe as
follows:

@*d-fi -—et,-u)o<(D<Yr+cDo

G[f*(u)]=
{

(A21)

[d-)] - 2fi - CL,II+U.)O<CD<%-U)O!

Thus, if f* is assumed known, e may be computed in the whole
domain I~I ? R (say, %Y Poisson’s integral formula), aiidso
can log q* snd therefore q. For ~ = ~ the mean-value theorem for
harmonic functions yields

e
11-=—

23 J
.o[f*(m)] dm-ct –g+u@

~=m -q)

.

—. — —. ..——-—-



. NACA TN 2056 . 23
,

0 Recalling the definition of f(m) (cf. equation (6)), this may be “
written

But, by

Formula

It

condition (A7),

(13) for the angle

(3I =0
g=~’

of attack follows from these two relations.

is seen from equations (A21) and (3) that %[f*(u))]e~eriences
juqs ofmaguitude B end YT at m= * audo=lr+oo,

respectively. This implies that q* venishes at ~ = Re-i~

P“

as ~ –Re–i~Z ~dat ~ imo
= *e as ~+ ReiW. Hence,

l+g

x(~) =
+(

$
(A22)

.

.: is regular for I.CI >R, continuousfor IC] 2 R, and everywhere
different from O or W. It follows that log X(c) is-regular
for ~~ >R and continuous for 1~1aR. Set

log &:”)= A(w) + ~(~) (~3)

A classic~l theorem-(see, for
the relation

[

Yt

A(u))=–a [B(u)+

o

(Clearly since q*m2 = A).

instance, reference 12, y. 243) yields

t) –B(u) – t)] cot; + log X(w) (A24)

X(m) =m (A25)

.

.

- ——-. .._... ____ .— ____ ._. _ ---- ___ —-—— -—. ————-—- —.. —.——. —___ _____
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.It follows from equation (A22) that -
,

{*[f*(m)]
A(u))= log (AM)

Also .

Since ~~(m)] is givenby equation (fil) ..

B((D) =–.*(m) + hIi?.tsnt (A28)
.

where

From equations (A26), (A28), and (A24), it follows that .

(A30)

where

h*(u.))=* /[
A*(~+ t) –A*(~– t)] cot$dt (A31)

Jo

equation (12).Formula (A30)’% clearly equivalent to

~. The Mapping Function

the lmowledge of.thsThe knowledge of the function f(m) implies
mapping from the domain ICI >R to the z-plane.
equations (2); (AZ’),and (A9), it is seen that. .

In fact, using

—————- -—
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.

i

.

so that .

a.z

[

1 ~edjif+id$
=dx+idy=Ze

. ~*
- q*(d@–i d~)1

or

‘z‘K=”-) (A32)

where a bar denotes the conjugate complex qwtity. ~S well-~o~

relation is due to Chaplygin (reference 1). In the ~–plane it becomes

.

and since z = ZT correspon& to ~

–G’(tj)@ d(

/
Both integrals are
functions.

path–independent,

Inp&~ti@~, if 1{1
. sn arc of the circle 1~1 =

----—----—--------- ——....... . . . ..

= R the
R. Then

iRei@ h

Jco

the integrands being analytic

integration can be performed along

o

–iB[f*(m)]
ti*[f*(m)]e

- —.._. . . ______ —-. .. -—-__— _______-_ _- __ ._
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where 6* is given by equation (A30) and ~ by equation (Ml). ~so,

Iy equation (A19), since V =0 on l~l=R,

= kie–im(q~ao) sin.

LD+CD() a -(D

— Cos o
2 2

If these values
and it is noted
is obtained:

ere introduced iqbo
that for ! = RelO,

the r@ht+hand side of equation (A33)
z = zLT*(0)], the following relation

1-

where

.

1P
j [

2+3 2p
m + uy) ‘x —h*(u) U.)+uo y

X sin —
~osz u) 1’00 ~h*(u.))

sin — e –L2’
2 2 2

(A35)
-.

Differentiation of equation (A35) with respect to m, together with
equation (Al), yields the relation .

B

(A36)

Integration of this equatim fro; o = ~ to’ u = 2Yt–~, taking
into account equations (5), leads to.

JIs
R=

J-%
.

(A37)

.
———.———— ——– .— —
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If this expression is titroduced into equation (A18), it follows that

It is easy toverifytha.t this is equivalent to eq.uxticm(14).

6. The

If R in equation (A36)
and the res@ting equation is
limit u, it is seen that

f*(~)‘=

.-

~tegrd Equation

is replacedby its value from equation (A37)
integrated from ~ to a variable upper

-al

I

L*(@) @t

2JC
+0

/

2nq

L*(~t) &@

‘o

(A39)

Since L* is givenby equations (X9), (A31), and (A35), this is an
integral equation for the function f*(u). Furthermore,
since f(m) = f*(m–~j, equation (A39) is identical with equation (15).

It remains to be shown that the solution of the integral equation
is equivalent to the solution of the original %oundary-value prollem.
To verify this, assume that an increasing function f*(u) satisfying
equation (A39) (for given values of X and ‘uo) is given. With this

function define G(c) by means of equations (A17), (u8), and (A37). “
From th~ way the integral equati~ was set up, it follows that there
exists an enalytic function w+(~) reguler for 1~] > R and satis-
fying the equation

(A4c0

. ..
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.-

by equation (A30) end ~ by equation (fil)., With ~where I* is given
these functions, G
This function maps
Hence

and @, form the mapping function, equation (A33).
I!l =R in a Onbto-one way onto the profile P. ~

I
)

dz=O

if the integration is performed along l~l=R. By Cauchy’s theorem
‘ the same is true for any simple closed curve in 1~1~ R. Hence

equation (A33) defines a on~valued transformation
to the z–plane. Next,

from the ~–plane

Thusas C+W

).-J-I
.

ay
w“

.

.

.
, \

By equation (8) this is equivalent to

ax—+0
av

as ~+m. It follows thd.t ~ = “ is
the Jacobian of the transfor~tion

taken into z = “. “Finally

.
.— ..— — -. —-———
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~ _ a(x,y) _ a(z,z)
a(E,q) a(g,~

is equal to

(A41)

Since it was assumed that f*’(u) 20, it follows from equation (A39)
that L*(u) >0, so thatby equations (A30) and (A35) I?*I ~1. By
the maximum modulus principle, and hy equation (A40), this implies
that I*1 <1 for 1~1 >R, so that

J>O for

The preceding statements contain the result that equation (A33)
gives a one-to+ne mapping of I!.I > R onto ‘E(P), taking ICI = R
htO P and { . ~ fito ~ . ~. Therefore the fmctions @ ~d ~
may be considered as functions of x and y, defined in the
domain E(P). Now, by equations (A33) ~d (A13), ,

where

,

Hence

.

,

(A42) ~

(A43)

(A44)

.. ——- -. .-. ... .. — .. .. . . . ..-__>_-A— .- .——.-
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By use of a classical
this relation that in

NACA!rN 2056. .

theoremby Weierstrass, it may be concluded from
the z-plane @ satisfies the minimal surface

equation (i.e., is the velocity potential of
Next,

u— ‘V=ao(w)=
a compressible flow). ,

2a.@
az

(w ac+ w X.—
‘2a0 a~az araz )

(Ak5)

Using equation (A33) end the expression (Akl) for the Jacobia?n,it is
easily seen that

ac. 2 e

Z-1–[W4W

az L–

On the other hand,

%=
ag

(A46)

so that by equations (A45j to (A47)

Comparing the last expression with equations (AIO) and (All), it is
seen that @ is the ‘distorted velocity” of the compressible flow
generatedby ~.. Now equation (A40) shows that $ satisfies the
required conditions on the profile P and at infinity.

.

,“

—— ..-——
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TABLE1.–SUCCESSIKEAPPROXll&UkONSTO THEFONCTIONf(o)

[1-cmkmki profile, G = 0.15,&= 0.685,k = 0.157,~ = m, U1 = 3.122]
.

- ,—,

aeg) @ad.ians) fo(m) fl(m) fp(m) f@ fh(m) f~(u) f6(~) fT(o) f8(W) fg(~)

o 0.000 0.000 0.000 0.000 0.ooo-0.000 0.000 0.000 0.000 0.000 0.000
10 .175 .032 .031 .034 .032 .032 .033 .032 .032 .032 .032
20 .349 .x28 .126 .134 .128 .127 .129 ,.127 .127 .3.27 .127

.524 .279 .277 .293 .279 .279 .281 .279 .279 .279 .279
E .698 .476 .474 .501 .477 .477 .479 .4?7 .477 .477 ,.477

50 .873 .708 .706 .745 .708 .710 .7SL .710 .710 .710 .710
60 1.047 -.962 .960 1.011 .960 .965” .965 .965 .965 .965 .965
70 1.222 ‘1.2271.225 1.287 1.221 L 232 1.230 1.231 1.231 1.231 1.231
80 1.396 1.493 1.491 1.562 1.482 1.499 1.495 1.498 1.497 1.497 1.497
90 1.571 1.751 1.749 1.826 1.734 I..758 1.751 L 756 1.754 1.755 1.755

100 1.745 1.994 1.992‘2.0721.971 2.010 1.991 1:999 1.996 1.997 1.997
L1O 1.g20 2.218 2.216 2.295 2.189 2.242 2.2H 2.223 2.218 2.220 2.219
L20 2.,094 2.420 2.418 2.491 2.385 2.442 2.4o8 2.k23 2.416 2.419 2.418
L30 2.269 2.597 2.595 2.658 2.558 2.618 2.580 2.599 2.590 2.594,2.592
L40 2.444 2.750 2.743 2.797 2.707 2.768 2.727 2.749 2.738 2.744 2● 741

L50 2.618 2.878 2.867 2.910 2.835’2.890 2.851 2.874 2.862 2.869 2.865
L60 2.793 2.983 2.968 2.997 2.945 2.987 2.955 2.976 2.96k 2.971 2.967
170 2.967 3.069 3.051 3.064 3.040 3.061 3.044 3.056 3.048 3.053 3.050
L80 3.142 3.142 3.U2 3.E’2 3.122 3.I22 3.lpp 3.X2 3.122 3.I.223.122
L90 3.316 3.215 3.195 3.191 3.198 3.191 3.198 3.192 3.196 3.193 3.195

200 3.491 3.300 3.282 3.286 3:278 3.280 3.282 3.278 3.282 3.279 3.281
210 3.665 3.405 3.388 3.409 3.376 3.392 3.386 3.387 3.3~ 3.387 3.387
~po 3.840 3.534 3.515 3.56o 3.496 3.527 3.514 3.519 3.517 3.518 3.518
?30 4.014 3.686 3.668.3.737 3.64-23.685 3.668 3.675 3.672 3.674 3.673
?40 4.189 3.863 3.849 3.939 3.81-93-866 3.848 3.856 3.852 3.854 3.853

250 4.363 4.065 4.055 4.166 4.023 4.-0704.052”4.060 4.056 4.058 4.057
260 4.538 4.289 4.282 4.415 4.251 4.295 4.278 4.286 4.282 4.285 4.283
?70 4.712 4.532 4.528 4.682 4.500 4.538 4.524 4.531 4.527 4.530 4.528
?80 4.887 4.790 4.787 4.962 4.765 4.796 4.784-4.790 4.786 4.789 4.787
290 5.c62 5.056 5,055 5.249 5.039 5.061 5.052 5.056 5.053 5.055 5.054

~oo 5.236 5.32I.5.321 5.533 5.311 5.325 5.318 5.321’5.319 5.321 5.320
310 5.411 5.575 5.576 5.669 5.571 5.578 5.574 5.576 5.574 5.576 5.575
320 5.585 5.807 5.808 5.779 5.8o5 5.809 5.806 5.807 5.807 5.808 5.807
330 5.760 6.005 6.006 5.989 6.003 6.006 6.004 6.005 6.004 6.005 6.005
340 6.934 6.156 6.158 6.149 6.156 6.157 6.156 6.156 6.156 6.156 6.156

350 6.109 6.251 6.252 6.249 6.251 6.251 6.251 6.251 6.251 6.251 6.251
360 6.283 6.283 6.283 6.283 6.283 6.283 6.283 6.283 6.283 6.283 6.283

00 -----0° 30$5° 52!1° 3794° 4712° 42!3° 52’3° 17130 37!3° 27~

.-

.

.
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TABLE2.–71LOCITY DEYTR133WI!ION

[Joulcowskiprofile, 6 = 0.15, Mm= 0.685, k = 0.157, ~ = SC,al = 3.122]

.—

\

~hm
5

0
10
20

::

50
60

E
‘ 90

100
11.o
120
130
140

150
160 ‘
170
180 .
190

200
210
220
230
24o

250
260
270
280
290

300
310
320
330
340

350
360

By present
method

0.884
.849
.856
.888
.932

.984
‘ 1.047
1.121
1.2ok
1.29P

1.392
1.492
1.589
1.672 .
1.715

1.675
1.464
.994
.457
.299

.760
1.034
1.180
1.244
1.25s.

1.235
1.194.
1.143
1.088
1.033 ,

.981
●935
.895
.863
.839

.839 ““

.884

—

For’incompressible
fluid .

0.869
.876
.893
.919
.952

*993
1.040
1.092
1.148
1.205

1.263
1.319
1.372
1.415
1.445

1.445
1.373
1.098
.070
● 377

.837
1.047
1.141
1.177
1.182

1.167
1.141
1.106
1.068
1.028

.990
● 954
.923
.898
.880

.870

.869

—--—... ..__—_

By K&m&Tsi~
method

0.831
. 8J+0
.860
.893
● 935

.990
1.056
1.132
1.220
1.316

1.421
1.529
1.641
1.739
1.812

1.812
1.644
1.141

.059 “

.325

.793
1.066
1.209
1.268
1.277

1.251
1.208
1.155
1.097
1.039

.986

.938

.898

.866

.@.4

.832

.831

.—------ -— .—.-—-.—._ —.——— ._. _. —.—— ——z . . . . . . ..—. — .—. ._. —.—. .
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Figure l.- Relationshipsinz-plane. “

..

Figure2,- “Relationships
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